\qquad

Order the numbers from least to greatest from page 1.
Your secret code is the $7^{\text {th }}$ number once you have ordered them from least to greatest.

Lock \#2: U2 - L 4
a) Circle the multiples of 9

Underline the multiples of 11 .

The lowest common multiple of $9 \& 11$ is \qquad .
b) Circle the multiples of 8

Underline the multiples of 3
The lowest common multiple of $8 \& 3$ is \qquad .
c) Circle the multiples of 8 .

Underline the multiples of 4.
The lowest common multiple of $8 \& 4$ is \qquad .

HUNDFODS Chart									
\|	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40

The secret code for this lock is to write your answers as one giant number:

Lock \#3: U2 - L 5

Help the penguin find its babies by colouring all of the prime numbers. Hint: cross out the numbers that you know are composite first.

Reminder:

A prime number is a number that can only be divided by I and itself evenly.
2 can be divided by I and 2 evenly
A composite number is a number that can be divided by more than 2 numbers
6 can be divided by I, 2, 3, and 6
Remember: an odd number is a number that cannot be divided evenly by 2 (for example: I and 3). An even number is a number that can be divided equally by 2 (for example: 2 and 4)

Your secret code: how many numbers in this maze are prime?

